The Periodic Character of the Difference Equation xn+1=f(xn-l+1,xn-2k+1)
نویسندگان
چکیده
In this paper, we consider the nonlinear difference equation xn 1 f xn−l 1, xn−2k 1 , n 0, 1, . . . , where k, l ∈ {1, 2, . . . } with 2k / l and gcd 2k, l 1 and the initial values x−α, x−α 1, . . . , x0 ∈ 0, ∞ with α max{l − 1, 2k − 1}. We give sufficient conditions under which every positive solution of this equation converges to a not necessarily prime 2-periodic solution, which extends and includes corresponding results obtained in the recent literature.
منابع مشابه
Long-Term Behavior of Solutions of the Difference Equation xn+1=xn-1xn-2-1
and Applied Analysis 3 Proof. Assume that xN xN 2k and xN 1 xN 2k 1, for every k ∈ N0, and some N ≥ −2, with xN / xN 1. Then, we have xN 4 xN 2xN 1 − 1 xNxN 1 − 1 xN 3 xN 1. 2.4 From this and since xN 4 xN , we obtain a contradiction, finishing the proof of the result. Theorem 2.3. There are no periodic or eventually periodic solutions of 1.1 with prime period three. Proof. If xN xN 3k, xN 1 xN...
متن کاملGlobal Behavior of a Higher-order Rational Difference Equation
We investigate in this paper the global behavior of the following difference equation: xn+1 = (Pk(xn i0 ,xn i1 , . . . ,xn i2k ) + b)/(Qk(xn i0 ,xn i1 , . . . ,xn i2k ) + b), n = 0,1, . . ., under appropriate assumptions, where b [0, ), k 1, i0, i1, . . . , i2k 0,1, . . . with i0 < i1 < < i2k, the initial conditions xi 2k ,xi 2k+1, . . . ,x0 (0, ). We prove that unique equilibrium x = 1 of that...
متن کاملOn the Reciprocal Difference Equation with Maximum and Periodic Coefficients
We study the nonlinear difference equation xn = max { An xn−1 , Bn xn−2k−1 } , n ∈ N0, where k is any fixed positive integer and the coefficients An,Bn are positive and periodic with the same period 2. The special case when k = 1 has been investigated earlier by Mishev, Patula and Voulov. Here we extend their results to the general case. AMS subject classification: 39A10.
متن کاملOn the Solutions of the Difference Equation
We study the solutions and attractivity of the difference equation xn+1 = axn−(2k+2) −a + 2k+2 ∏ i=0 xn−i for n = 0, 1, 2, ... where a, x−(2k+2),x−(2k+1),..., x0 are the real numbers, x−(2k+2)x−(2k+1)... x0 = a, and k ∈ Z. Mathematics Subject Classification: 39A10, 39A12
متن کاملDynamics of a Higher Order Nonlinear Difference Equation
We consider the higher-order nonlinear difference equation xn 1 α xn / A Bxn xn−k , n 0, 1, . . ., where parameters are positive real numbers and initial conditions x−k, . . . , x0 are nonnegative real numbers, k ≥ 2. We investigate the periodic character, the invariant intervals, and the global asymptotic stability of all positive solutions of the abovementioned equation. We show that the uniq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008